

WELCOME!

Water Treatment Math

Having Audio or Tools difficulties?

Click on the Purple Flower and change your viewing format.

It may help!

		File Options View Help 🕥 -	3 x
		Screen Sharing	5
	Q	Audio	5
		+ Timer S	
		+ Attendees: 1 out of 52	IX
	E	+ Materials (0)	IX
		- Chat	1 🗙
	(Ð)		*
Tool			Ŧ
		[Type message here]	
		All - Entire Audience	end
		Train now Training ID: 689-707-404	
		GoTo Training	

М	F	K	0	s	K	С	I	G	Ρ	A	R	K	V	М	D	М	U	s	С			
0	U	Z	v	Y	I	Ν	Ρ	v	Ν	Е	J	W	Ρ	т	U	Ν	A	v	Н	AMINONIA	CALCION	CHLORINE
L	s	М	Ν	E	J	F	в	Ν	0	I	т	A	L	I	т	Ν	E	v	с			
U	K	0	I	E	N	0	A	D	I	Ν	Ν	с	с	s	Ν	s	A	G	K	CYLINDER	DIAPHRAGM	EJECTOR
Ρ	R	N	с	Х	Y	т	Ν	т	s	P	I	L	Н	Y	Т	U	E	L	0			
х	М	т	R	G	A	Ρ	U	E	E	A	A	L	т	L	v	v	A	s	т	FIFTY	GAS	INJECTOR
D	0	R	Н	U	L	М	I	R	в	с	W	0	с	J	0	т	R	М	Ν			
R	L	х	v	s	s	U	I	с	I	Ρ	Ν	E	Y	Е	G	R	A	Q	Е	LEAK	LITER	MAXIMUM
L	E	A	K	K	М	s	s	s	J	D	E	М	L	0	Е	т	I	I	G			
F	W	С	Н	R	т	A	0	K	U	J	G	R	I	с	W	W	L	N	Α		MPDI	ONE
s	R	R	J	A	A	D	R	R	v	A	F	х	N	х	s	х	С	Y	Е		WINDL	ONL
R	Z	E	L	Ρ	I	L	R	G	R	W	U	U	D	Y	G	М	А	в	R			
Ζ	Z	т	Ρ	U	Е	L	Е	Н	I	М	Е	J	E	с	Т	0	R	L	0	PER	PERISTALTIC	PPM
Ζ	I	Е	М	A	W	0	Ρ	в	Q	L	Ρ	v	R	Q	I	F	Ρ	V	Е			
С	K	М	Q	Ζ	W	A	W	L	Q	С	L	Ρ	М	Ν	S	в	I	I	х	RAILCAR	REAGENT	RESIDUAL
т	М	0	т	с	I	D	Ν	D	R	E	s	I	D	U	A	L	С	F	s			
R	G	Т	N	D	D	s	s	R	s	A	s	v	М	в	0	E	Ζ	Ε	W	ROTOMETER	SCBA	SODIUM
L	L	0	R	E	т	I	L	М	E	Z	в	A	K	Q	N	D	Y	J	Ν			
J	R	R	F	E	D	Ρ	В	I	т	I	F	D	Ζ	F	Е	Y	U	Т	в	TON	VENTILΑΤΙΩΝ	VENTURI
А	I	N	0	М	М	A	Н	E	Е	Y	I	L	Y	Ν	Н	0	Q	М	0			

Addition
Area
Calculate
Conversions
Converting
Cubic
Cylinder
Decimal
Detention
Dimension
Distance
Division
Dosage
Equal
Factor
Flow
Fraction
Gallon

Liter Math Measure Milligrams Multiply Percent Percentage Pi Pounds Ratio Rectangle Square Storage Subtraction Supply Units Velocity Volume

Water Treatment Word Search

А	D	Η	L	0	Е	Η	F	М	В	R	М	М	s	Т	G	G	С	Y	Е
s	Е	0	V	Е	Α	Р	U	Ζ	А	Е	В	W	0	Ν	Ν	F	Α	L	R
W	Ν	R	s	J	R	L	Е	Т	s	F	Q	R	Κ	Ι	L	R	L	Р	U
0	Ι	0	А	А	Т	А	Ι	R	Ζ	Ζ	Е	U	Т	М	Ι	А	С	Р	s
L	Е	L	Ι	Ι	G	0	U	V	С	D	S	R	А	Р	Т	С	U	U	А
F	Κ	Е	Р	s	s	Е	Ζ	Q	Ν	Е	Е	Ι	V	L	Е	Т	L	s	Е
Ν	Х	L	L	F	R	Η	Η	Ι	s	v	Ν	s	М	R	R	Ι	Α	Ν	Μ
0	Y	В	s	G	М	Е	L	Х	Ν	Ν	Т	Т	G	С	М	0	Т	U	A
Ι	Κ	Α	Х	S	Ν	Y	V	0	W	0	Ν	Η	Α	Η	Ζ	Ν	Е	Q	W
Т	С	U	В	Ι	С	Α	С	Ν	М	Ι	L	L	Ι	G	R	А	М	s	D
Ι	Y	s	Т	Ι	Ν	U	Т	В	0	Т	L	Η	Т	0	Е	G	Т	Е	D
D	Ι	s	Т	Α	Ν	С	Е	С	D	С	Т	А	U	Η	А	Е	Т	Е	Т
D	Y	Т	Ι	С	0	L	Е	V	Е	Α	D	Ι	М	L	Ζ	E	0	Ν	F
А	s	Т	0	R	Α	G	Е	D	М	R	L	Ι	L	Ι	Ν	V	Е	R	Α
В	s	D	Ν	U	0	Р	Е	Ν	А	Т	U	0	V	Т	С	С	Y	Е	С
s	Ι	Μ	Η	L	Ζ	G	С	Ζ	U	В	Ν	Y	Ι	Ι	R	Е	М	v	Т
Ν	0	Ι	s	Ν	Е	М	Ι	D	s	U	Ζ	0	J	Е	s	U	D	С	0
R	F	Q	М	U	F	Y	Т	s	М	s	Ν	G	Ρ	Ζ	L	Ι	Ζ	В	R
Ν	G	С	Ζ	D	Ν	Е	Ν	0	0	Р	Ζ	С	Ι	0	Е	R	0	Е	Т
Е	С	R	F	Е	Ι	Р	W	М	W	v	W	Κ	v	Κ	Ν	в	J	Ν	F

AGENCY Word Search BACTERTA CERTIFICATION COLTFORM Κ Ρ \cap IJ \square R Τ Ν Τ Ν G М ()CONTAMINANT F Y Ρ IJ Т В R F K R Т ()Α DRINKING EPA F Ν Η Т F М T, Α Η Α ()R INORGANIC F R М S F Α T. ŢŢ М Ρ \square () (- MAXTMUM MONITORING] Τ Α Α F Т ŢŢ G Α Α () $\left| \right\rangle$ NITRATE Ţ R J Т Х Ν Т Τ F Τ R NOTIFICATION OPERATOR Ν Α Т R L T. F Ν А Т () ()ORGANTC Т Ν R М Т Τ С С F Α R \square OUTBREAK K Т Т Т IJ Τ Τ, TT TI Ν ()Τ PESTICIDE PUBLIC Y М R Р Ν R F Р С Υ Ρ Q () OUALITY ŢŢ Ν Т Α Ν Ν Т М Τ Α Ν RADIONUCLIDE ()REGULATIONS S Ν S Т ٦J R ŢŢ Α Η Т В Т RULE Ζ G K Х Ρ W S S E R Ζ SAFE 1) SAMPT, TNG Α Τ R E K Α E Ν Τ. M Ρ T, ()TRIHALOMETHANE F Ά VIRUS R Т M Ρ М R F Т ()()WALKERTON

WATER

Т

Т

Y

Α

G

F

Ν

Y

77

TT

M

Ν

()

Т

Т

Α

С

Τ

F

Τ

Т

()

Ν

Ν

Ζ

Your Moderator Today...

Jim McVeigh CET Rural Development Specialist – Drinking Water

jmcveigh@rcac.org

WELCOME!

Water Treatment Math

This workshop is sponsored by the <u>Sacramento River Funding</u> <u>Area Disadvantaged Community</u> <u>Involvement Program</u>, a grant funded program supported by the California Department of Water Resources' Integrated Regional Water Management Program

For more information on the DWR DACI-Program go to: <u>https://water.ca.gov/Work-With-Us/Grants-And-Loans/IRWM-Grant-Programs/Proposition-1/DAC-Involvement-Program</u>

Prop 1 Funding Areas

Sacramento River Funding Area Disadvantage Community Involvement Program

The goals of the SRFA-DACI-Program:

- 1. Engage DAC organizations, water purveyors and stakeholders in IRWM
- 2. Identify the water and wastewater management needs of DACs
- 3. Develop strategies and solutions for DAC water management needs.

This workshop was developed to address key needs that have been identified for DAC communities and/or water providers in this region. For questions on the SRFA DACIP Program and how to engage with your IRWM please contact: JoAnna Lessard (jlessard@yubawater.org)

Rural Community Assistance Partnership

RCAP National Office 1701 K St. NW, Suite 700 Washington, D.C. 20006 www.rcap.org

Western RCAP Rural Community Assistance Corporation www.rcac.org

Midwestern RCAP Midwest Assistance Program www.map-inc.org

Southern RCAP Communities Unlimited www.communitiesu.org

Great Lakes RCAP Great Lakes Community Action Partnership www.glcap.org

Southeastern RCAP Southeast Rural Community Assistance Project www.sercap.org

Northeastern RCAP RCAP Solutions www.rcapsolutions.org

RCAC Programs

Affordable housing

Community facilities

Water and wastewater infrastructure financing (Loan Fund)

Classroom and online training

On-site technical assistance

Median Household Income (MHI) surveys

Where is my certificate for attendance?

Certificates for attendance can be downloaded and selfprinted. Certificates for <u>online</u> attendance will <u>not</u> be mailed

Certificates are not available until 48 hours after the completion of the class.

Questions?

Text your questions and comments anytime during the session

Your Presenter Today...

Hmmm… You should probably start the recording now!

John Hamner jhamner@rcac.org

Middletown, CA

WELCOME!

Water Treatment Math

Poll #1 – Have you taken the test with the new platform yet?

Water Math Topics Today

- Expected Range of Knowledge
 - Basic conversions
 - Volumes
 - Chlorination & chemical feed
 - Detention time
 - Filtration
 - Velocity

SWRCB Website Address

http://www.waterboards.ca.gov/drinking_water/certlic/occupations/ DWopcert.shtml

≫ Drinking Wa	ter Treatment & Dist 🗙	+					-					x
\leftrightarrow \rightarrow G	(i) waterboards.ca.go	v/drinking_wa	ater/certlic/o	ccupations/[OWopcert.html						6 ☆	9:
	Cov 🏠 Share	e: f У	Ω+ ⊠						About Us Co	ontact Us Subscribe	🗘 Settings	<u>^</u>
CALIFORM WATE State Water R	R BOARDS			Board	P rograms	Drinking Water	Water Quality	Water Rights	Notices	Water Boards	Q Search	

Drinking Water Treatment & Distribution System Operators

In 1971, laws and regulations governing the certification of potable water treatment facility operation were enacted. The regulations establish at what level these facilities should be manned, the minimum qualifications for testing at each of the five grade levels, and the criteria for the renewal and revocation of operator certificates.

In 1998, the United States Environmental Protection Agency (USEPA) established guidelines for the certification and recertification of operators of community and non-transient non-community public water systems. On January 1, 2001, new state regulations were adopted to comply with these guidelines and the existing water treatment operator certification program was modified accordingly. The new regulations also established a water distribution operator certification program. This program became the Drinking Water Operator Certification Program (**DWOCP**).

The DWOCP was originally under the Department of Health Services and then the California Department of Public Health. In 2014, the DWOCP was transferred to the State Water Resources Control Board (SWRCB) in the Division of Financial Assistance.

Home Drinking Water Certlic Occupations DWopcert

SWRCB Website Address

http://www.waterboards.ca.gov/drinking_water/certlic/occupations/ DWopcert.shtml

Drinking Water Treatment Exams Expected Range of Knowledge

<u>+</u>	1		-						
Exam Content	Number of questions								
Grade	T1	T2	Т3	T4					
Source Water	25	25	20	15					
Water Treatment Processes	25	25	35	20					
Operation/Maintenance	20	20	15	15					
Laboratory Procedures	15	15	15	15					
Regulations/Administrative Duties	15	15	15	35					

Source Water

Watershed Protection, Wells / Groundwater, Surface Water / Reservoirs, Raw Water Storage, Clear Well Storage

Water Treatment Processes

Coagulation/Flocculation/ Sedimentation, Filtration, Disinfection, Demineralization, Corrosion Control, Iron and Manganese removal, Fluoridation, Water Softening, BAT, (Best Available Technology)

Operation / Maintenance

Chemical feeders, Pumps and Motors, Blowers and Compressors, Water meters, Pressure gauges, Electrical generators, Safety, SCADA systems

Laboratory Procedures

Sampling, General Lab Practices, Disinfectant analysis, Alkalinity analysis, pH analysis, Turbidity analysis, Specific conductance, Hardness, Fluoride analysis, Color analysis, Taste and Odor analysis, Dissolved Oxygen analysis, Algae Count, Bacteriological analysis

Regulations/Administrative Duties

Planning, Organizing, Directing, Controlling, Staffing, Implementing Regulations, Record keeping, Safe Drinking Water Act and amendments, Surface Water Treatment Rule and amendments, Primary Contaminants, Secondary Contaminants, Lead and Copper Rule, Fluoride Regulations, Operator Certification Regulations What are we actually doing?

We are CONVERTING!

- Pay attention to the units of measure...
- You don't have to show your work, but it helps keep order

Units of Measure Examples...

24 hr/day x 60 min/hr x 60 sec/min = sec/day

MGD x 8.34 lbs/gal x ppm = lbs/day

50 ft x 0.433 psi/ft = psi

Water Math – Terms, Definitions and Water Measurements

- Gallons per cubic ft = gal/cu ft
- Pounds per gallon = lbs/gal
- Pounds per square inch = psi
- Gallons per day = gpd
- Gallons per minute = gpm
- What about percentages?

		File Options View Help 🕥 -	3 x
		Screen Sharing	5
	Q	Audio	5
		+ Timer S	
		+ Attendees: 1 out of 52	IX
	E	+ Materials (0)	IX
		- Chat	1 🗙
	(Ð)		*
Tool			Ŧ
		[Type message here]	
		All - Entire Audience	end
		Train now Training ID: 689-707-404	
		GoTo Training	

What would 75% be in the form of a decimal?

What would 5% be in the form of a decimal?

5	5%		50
0.05			
		5.0	
5.00			1\$
	0.005		
0.50			005.0

NO UNIT OF MEASURE!

- Percentages as a decimal
 - (65-70%, 0.65-0.70) (5-15%; 0.05-0.15)
- Ratios relationship between two numbers
 - 2:1, 5/1, 10 to 1,
- Pi π (3.14) (radius)
 - Circumference
- 0.785 = 78.5% (diameter)
 - (0.785) x (Dia., ft)²

0.785 = 78.5% of the area of a square of the same dimension

\sim	EDWUND G. BROWN JR.	
Water Boards State Water Resou	Irces Control Board	PUMPING 1 horsepower (Hp) = 746 watts = 0.746 kw = 3,960 gal/min/ft
UNITS AND CONVERSION FACTORS1 cubic foot of water weighs 62.3832 lb1 gallon of water weighs 8.34 lb1 liter of water weighs $1,000$ gm1 mg/L = 1 part per million (ppm)1% = 10,000 ppmft² = square feet and ft³ = cubic feet1 mile = $5,280$ feet (ft)1 yd³ = 27 ft³ and 1 yard = 3 feet1 acre (a) = $43,560$ square feet (ft²)1 acre foot = $325,851$ gallons1 cubic foot (ft³) = 7.48 gallons (gal)	VOLUME Rectangular Basin, Volume, gal = (Length, ft) × (Width, ft) × (Height, ft) × 7.48 gal/cu. ft. 4 Cylinder , Volume, gal = (0.785) × (Dia, ft) ² × (Height, Depth, or Length in ft.) × 7.48 gal/ft ³ 5 Time, Hrs. = Volume, galons (Pumping Rate, GPM, × 60 Min/Hr) 5 Supply, Hrs. = Storage Volume, Gals (Flow In, GPM - Flow Out, GPM) × 60 Min/Hr)	Water Hp = $(GPM) \times (Total Head, ft)$ (3,960 gal/min/ft) 6 Brake Hp = $(GPM) \times (Total Head, ft)$ (3,960) × (Pump % Efficiency) Motor Hp = $(GPM) \times (Total Head, ft)$ (3,960) × Pump % Eff. × Motor % Eff. "Wire-to-Water" Efficiency = (Motor, % Efficiency × Pump% Efficiency) Cost, \$ = (Hp) × (0.746 Kw/Hp) × (Operating Hrs.) × cents/Kw-Hr
1 gal = 3.785 liters (L) 1 L = 1,000 milliliters (ml) 1 pound (lb) = 454 grams (gm) 1 lb = 7,000 grains (gr) 1 grain per gallon (gpg) = 17.1 mg/L 1 gm = 1,000 milligrams (mg) 1 day = 24 hr = 1,440 min = 86,400 sec 1,000,000 gal/day ÷ 86,400 sec/day ÷ 7.48 gal/cu ft = 1.55 cu ft/sec/MGD	SOLUTIONS Lbs/Gal = (Solution %) × 8.34 lbs/gal × Specific Gravity 100 5 Lbs Chemical = 5 Specific Gravity × 8.34 lbs/gallons × Solution(gal) Specific Gravity = Chemical Wt. (lbs/gal) 8.34 (lbs/gal)	Flow. velocitv. area $Q = A \times V$ Quantity = Area x Velocity T Flow (ft³/sec) = Area(ft²) x Velocity (ft/sec) $\underline{MGD \times 1.55 \text{ cuft/sec/MGD}}_{.785 \text{ xpipe diameter ft x pipe diameter ft}} = \frac{\text{cu ft/sec}}{\text{sqft}} = \text{ft/sec}$ General
CHLORINATION Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l) 2	% of Chemical = <u>(Dry Chemical, lbs) x 100</u> in Solution (Dry Wt. Chemical, lbs)+(Water, lbs)	(\$)Cost/day = lbs/day x (\$)Cost/lb 8 Removal, Percent = (In - Out) x 100
(Gas) Ibs = Vol, MG x ppm or mg/L x 8.34 Ibs/gal HTH Solid (Ibs) = (Vol, MG) x (ppm or mg/L) x 8.34 Ibs/gal (% Strength / 100) Liquid (gal) = (Vol, MG) x (ppm or mg/L) x 8.34 Ibs/gal (% Strength /100) x Chemical Wt. (Ibs/gal) PRESSURE PSI = (Head, ft.) PSI = Head, ft. x 0.433 PSI/ft. 3	$GPD = (MGD) \times (ppm \text{ or } mg/L) \times 8.34 \text{ lbs/gal} \\ (\% \text{ purity}) \times \text{Chemical Wt.(lbs/gal)} \\ GPD = (Feed, ml/min. \times 1,440 min/day) \\ (1,000 ml/Lx 3.785 L/gal) \\ Two-Normal Equations: \\ a) C_1V_1 = C_2V_2 \qquad Q_1 \\ V_1 = Q_2 \\ V_2 \\ \hline \end{array}$	Specific Capacity, GPM/ft. = <u>Well Yield, GPM</u> Drawdown, ft. Gals/Day = (Population) x (Gals/Capita/Day) GPD = <u>(Meter Read 2 - Meter Read 1)</u> (Number of Days) Volume, Gals = GPM x Time, minutes
2.31ft./psi lbs Force = (0.785) (D, ft.) ² x 144 in ² /ft ² x PSI.	 b) C₁V₁+C₂V₂ = C₃V₃ C = Concentration V = Volume Q = Flow 	SCADA = 4 mA to 20 mA analog signal (live signalmA - 4 mA offset) x process unit and range (16 mA span) 4 mA=0 20 mA full-range

FILTRATION	C. T CALCULATIONS
Filtration Rate (GPM/sq.ft) = Filter Production (gallons per day) (Filter area sq. ft.) x (1,440 min/day) sq. ft. = square feet	$C \cdot t = (Chlorine Residual, mg/L) \times (Time, minutes)$
Loading Rate (GPM/ sq. ft.) = (Flow Rate, GPM) (Filter Area, sq. ft.) 10	Time, minutes = $(\underline{C \cdot t})$ IZ (Chlorine Residual, mg/L)
Daily Filter Production (GPD) = (Filter Area, sq. ft.) x (<u>GPM</u> /sq. ft. x 1,440 min/day)	(Time, minutes)
Backwash Pumping Rate (GPM) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM/</u> sq. ft.)	Inactivation Ratio = (Actual System C• t) (Table "E" C• t)
Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> /sq. ft.) x (Time, min)	C•t Calculated = T ₁₀ Value minutes x Chlorine Residual mg/l
Backwash Rate, GPM/ sq. ft. = <u>(Backwash Volume, gallons)</u> (Filter Area, sq. ft.) x (Time, min)	$Log Removal = 1.0 - \frac{\% Removal}{100} \times Log key \times (-1)$
Rate of Rise (inches per min.) = <u>(Backwash Rate gpm/sq.ft.) x 12 inches /ft</u> 7.48 gal/cu.ft.	
Unit Filter Run Volume, (UFRV) = <u>(gallons produced in a filter run)</u> (Filter Area sq. ft.)	
CHEMICAL DOSAGE CALCULATIONS Note: (% purity) and (% commercial purity) used in decimal form 11	
L bs/day gas feed dry = MGD x (ppm or mg/l) x 8 34 lbs/gal	Surface Loading Rate, (GPD/ sq. ft.) = (<u>Total Flow, GPD</u>) (Surface Area, sq.ft.)
Lbs/day = MGD x (ppm or mg/L) x 8.34 lbs/gal % purity	Detention Time = <u>Volume</u> flow 13
GPD = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> (% purity) x lbs/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = MGD x (ppm or mg/L) x 8.34 lbs/gal	Flow Rate = Volume
(commercial purity %) x (ion purity %) x (lbs/gal)	Time
(commercial purity %) x (ion purity %) x (lbs/gal) ppm or mg/l = <u>lbs/day</u> or <u>gallons x % purity x lbs/gal</u> MGD x 8.34 lbs/gal MG x 8.34 lbs/gal	Weir Overflow Rate, GPD/L.F. = (Flow, GPD) (Weir length, ft.)

UNITS AND CONVERSION FACTORS

```
1 cubic foot of water weighs 62.3832 lb
1 gallon of water weighs 8.34 lb
1 liter of water weighs 1,000 gm
1 mg/L = 1 part per million (ppm)
1% = 10,000 ppm
ft<sup>2</sup> = square feet and ft<sup>3</sup> = cubic feet
1 mile = 5,280 feet (ft)
1 yd<sup>3</sup>= 27ft<sup>3</sup> and 1 yard = 3 feet
1 acre (a) = 43,560 square feet (ft<sup>2</sup>)
1 acre foot = 325,851 gallons
1 cubic foot (ft<sup>3</sup>) = 7.48 gallons (gal)
1 gal = 3.785 liters (L)
1 L = 1,000 milliliters (ml)
1 pound (lb) = 454 grams (gm)
1 lb = 7,000 grains (gr)
1 grain per gallon (gpg) = 17.1 mg/L
1 gm = 1,000 milligrams (mg)
1 day = 24 hr = 1,440 min = 86,400 sec
1,000,000 gal/day ÷ 86,400 sec/day ÷ 7.48 gal/cu ft
   = 1.55 cu ft/sec/MGD
```

State of California Math Conversion Sheet Provided At Exam
CHLORINATION

Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l)

(Gas) lbs = Vol, MG x ppm or mg/L x 8.34 lbs/gal

HTH Solid (lbs) = (Vol, MG) x (ppm or mq/L) x 8.34 lbs/qal (% Strength / 100)

Liquid (gal) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal (% Strength /100) x Chemical Wt. (lbs/gal)

2

Goofy, but it works. When using 0.433... If the answer is psi, I multiply. If the answer is feet/head, I divide instead.

2.31 Feet of Water

VOLUME

Rectangular Basin, Volume, gal = (Length, ft) x (Width, ft) x (Height, ft) x 7.48 gal/cu. ft.

Cylinder , Volume, gal = (0.785) x (Dia, ft)²x (Height, Depth, or Length in ft.) x 7.48 gal/ft³

4

Time, Hrs. = <u>Volume, gallons</u> (Pumping Rate, GPM, x 60 Min/Hr)

Supply, Hrs. = <u>Storage Volume, Gals</u> (Flow In, GPM - Flow Out, GPM) x 60 Min/Hr)

SOLUTIONS

5

- Lbs/Gal = (Solution %) x 8.34 lbs/gal x SpecificGravity 100
- Lbs Chemical = Specific Gravity x 8.34 lbs/gallons x Solution(gal)
- Specific Gravity = Chemical Wt (lbs/gal) 8.34 (lbs/gal)
- % of Chemical = (Dry Chemical, Lbs) x 100
 (Dry Wt Chemical, Lbs) + (Water, Lbs)
- GPD = (MGD)x (ppm or mgL) x 8.34 jbs/gal (% purity) x Chemical Wt (lbs/gal)
- GPD = (Feed, ml/min.x1,440 min/day) (1,000 ml/L x3.785 L/Gal)

Two-Normal Equations:

a)
$$\underline{C}_{1} \underline{V}_{1} = C_{2} \underline{V}_{2}$$

 $\underline{Q}_{1} = \underline{Q}_{2}$
 $V_{1} \quad V_{2}$

- b) $C_1V_1 + C_2V_2 = C_3V_3$
- C = Concentration, V = Volume, Q = Flow

Flow, velocity, area $Q = A \times V$ Quantity = Area × VelocityTFlow (ft³/sec) = Area(ft²) × Velocity (ft/sec) $MGD \times 1.55 cuft/sec/MGD$ = cuft/sec = ft/sec $.785 \times pipe diameter ft \times pipe diameter ft = sqft$

General

- (\$) Cost / day = $Lbs/day \times ($) Cost/lb$
- Removal, Percent = <u>(In Out)</u> x 100 In Specific Capacity, GPM/ft. = <u>Well Yield, GPM</u> Drawdown, ft.
- **Gals/Day =** (Population) x (Gals/Capita/Day)
- **GPD =** (Meter Read 2 Meter Read 1) (Number of Days)

Volume, Gals = GPM x Time, minutes

FILTRATION

Filtration Rate (GPM/sq.ft) = Filter Production (gallons per day) sq. ft. = square feet (Filter area sq. ft.) x (1,440 min/day) Loading Rate (GPM/sq. ft.) = (Flow Rate, GPM)(Filter Area, sq. ft.) **Daily Filter Production (GPD)** = (Filter Area, sq. ft.) x (GPM/ sq. ft. x 1,440 min/day) **Backwash Pumping Rate (GPM)** = (Filter Area, sq. ft.) x (Backwash Rate, GPM/ sq. ft.) Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, gpm/sq. ft.) x (Time, min). Backwash Rate, GPM/sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.)x (Time, min) **Rate of Rise (inchesper min.)** = (backwash rate gpm/sq.ft.) x 12 inches/ft 7.48 gal/cu.ft. Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (filter area sq. ft.)

Chemical Dosage Calculations

Note (% purity) and (% commercial purity) used in decimal form

Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal

Lbs/day = MGD x (ppm or mg/L) x 8.34 lbs/gal % purity

 $GPD = \underline{MGD \ x \ (ppm \ or \ mg/L) \ x \ 8.34 \ lbs/gal}}_{(\% \ purity) \ x \ lbs/gal}$

 $GPD = \underline{MGD \ x \ (ppm \ or \ mg/L) \ x \ 8.34 \ lbs/gal}}_{(commercial \ purity \ \%) \ x \ (ion \ purity \ \%) \ x \ (lbs/gal)}$

ppm or mg/l =
$$\frac{lbs/day}{MGD \times 8.34 lbs/gal}$$
or $\frac{gallons \times \% purity \times lbs/gal}{MG \times 8.34 lbs/gal}$ MGD x 8.34 lbs/galMG x 8.34 lbs/gal

SEDIMENTATION

Surface Loading Rate, (GPD/sq. ft.) = (<u>Total Flow, GPD</u>) (Surface Area, sq.ft.)

Detention Time = Volume flow

Detention Time hours = <u>volume(cu ft) x 7.48 gal/cu ft x 24 hr/day</u> Gal/day

Flow Rate = <u>Volume</u> Time

Weir Overflow Rate, GPD/L.F. = <u>(Flow, GPD)</u> (Weir length, ft.)

Questions?

Text your questions and comments anytime during the session

Biggest tip for newcomers!

Pay attention to the cancelation of units!

Box 2 - Formulas used to determine water at rest (gallons, MG, lbs, etc.)

CHLORINATION

- **Dosage, mg/l** = (Demand, mg/l) + (Residual, mg/l)
- (Gas) lbs = (Vol, MG) x (Dosage, mg/l) x (8.34 lbs/gal)
- HTH Solid (lbs) = (Vol, MG) x (Dosage, mg/l) x (8.34lbs/gal) (% Strength / 100)
- Liquid (gal) = (Vol, MG) x (Dosage, mg/l) x (8.34 lbs/gal) (% Strength /100) x Chemical Wt. (lbs/gal)

Box 11 - Formulas used to determine water in motion (gals/day, MGD, lbs/day, etc.)

Chemical Dosage Calculations

Note (% purity) and (% commercial purity) used in decimal form

Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal

Lbs/day = MGD x (ppm or mg/L) x 8.34 lbs/gal % purity

 $GPD = \underline{MGD \ x \ (ppm \ or \ mg/L) \ x \ 8.34 \ lbs/gal}}_{(\% \ purity) \ x \ lbs/gal}$

 $GPD = \underline{MGD \ x \ (ppm \ or \ mg/L) \ x \ 8.34 \ lbs/gal}}_{(commercial \ purity \ \%) \ x \ (ion \ purity \ \%) \ x \ (lbs/gal)}$

ppm or mg/l = $\frac{lbs/day}{MGD \times 8.34 lbs/gal}$ or $\frac{gallons \times \% purity \times lbs/gal}{MG \times 8.34 lbs/gal}$ MGD x 8.34 lbs/galMG x 8.34 lbs/gal

What am I adding to the water to treat it/make it safe?

- Chemicals
- Chlorine
 - Gas
 - Calcium hypochlori...
 - Sodium hypochlorite

Water Math Conversions – Chemical/Chorine Dosage

- In dosage problems, quantities of chemical are *given* in the following increments:
- Ibs *or* Ibs/day
- Gallons (chemical solution quantity) or Gal/day
- mg/L *or* ppm
- MG or MGD

What does Miller Genuine Draft have to do with water treatment?

When working dosage, convert Q to MG or MGD!

How many MGD is 2,000,000 gal/day? A. 2 MGD B. 0.2 MGD C. 0.02 MGD

What is not given in the question?

- THE CONVERSION NUMBER!
 - 8.34 lbs/gal
 - Chemical weight
 - 8.34 lbs/gal X specific gravity (SG)

Dosage – Box 2

1. If a given water source had a chlorine demand of 3 mg/L, and you wanted a chlorine residual of 0.5 mg/L leaving the plant, what would be your dose?

Chlorine Gas

Chlorine gas is fed in lbs or lbs/day

Chlorination – Box 2, Gas

1. If a chlorine gas concentration of 15 ppm were desired to be added to a storage tank holding 2.5 MG, how many pounds of chlorine gas would be required?

(Gas) lbs = (Vol, MG) x (Dosage, mg/l) x (8.34 lbs/gal)

Chlorination – Box 2, Gas

3. If a new storage tank measured 40 ft in diameter and were 30 ft tall, how many pounds of chlorine gas would be needed to dose this tank at 9 mg/L?

Chlorination – Box 2, Gas

- 3. If a new storage tank measured 40 ft in diameter and were 30 ft tall, how many pounds of chlorine gas would be needed to dose this tank at 9 mg/L?
- Find the volume first;
- 0.785 x 40 ft x 40 ft x 30 ft x 7.48 gal/ft³ = 281,846 gal Convert 281,846 to MG and use the formula given; 0.281 MG x 9 mg/L x 8.34 lbs/gal = 21.1 lbs

Questions?

Text your questions and comments anytime during the session

Poll #2 - Have you ever done chlorination math and applied it to your water system?

5 Minute Break

Poll #3 - Which chlorination product do you use, or have you used?

Dosage, Calcium Hypochlorite

- AKA; Dry and High Test Hypochlorite (HTH)
- An operator may be given dry chemicals (usually chlorine) that is not 100% strength
- Consider this in the dosage problem
- Remember to convert the % to a decimal (divide by 100)

Percentages

- How would an operator enter the percentage 70% into the calculator?
- **A**. 70
- **B**. 7.0
- **C**. 0.70
- **D**. 70%

Calcium Hypochlorite

Calcium Hypochlorite Accu-Tab[®] System (Not Pressurized) Accu-Tab 3-inch Tablets Cut-Away View sit on top of Sieve Plate Treated water overflows into outlet pipe Sieve Plate with holes -Chlorinated Adjust water flow -Water Out to control chlorine Out delivery. Untreated water rises through Untreated holes in Sieve Plate to make Water In Water Flow contact with bottom of Accu-Tab 3-inch Tablets for chlorination. Balance of Tablets in tank remain dry.

Accu-Tab 3-inch Tablets treat water at a consistent rate

Chlorination – Box 2, HTH

1. If a storage tank with 0.5 MG was treated with 65% calcium hypochlorite and the dose was 10 ppm, how many pounds of chemical would be needed?

HTH Solid (lbs) = (Vol MG) x Dosage, mg/L) x (8.34lbs/gal) (65% Strength/100)

Dosage – Box 11, HTH

4. If 70% available HTH chlorine were added to water at a concentration of 15 ppm in a daily flow of 2.5 MGD, how many lbs would be used daily?

Lbs/day = <u>MGD x (ppm or mg/l) x 8.34 lbs/gal</u> % purity

	FILTRATION	C- T CALCULATIONS
	Filtration Rate (GPM/sq.ft) = <u>Filter Production (gallons per day)</u> sq. ft. = square feet (Filter area sq. ft.) x (1,440 min/day)	C+t = (Chlorine Residual, mg/L) x (Time, minutes)
	Loading Rate (GPM/ sq. ft.) = (<u>Flow Rate, GPM)</u> (Filter Area, sq. ft.)	(Chlorine Residual, mg/L)
	Daily Filter Production (GPD) - (Filter Area, sq. ft.) x (GPM/sq. ft. x 1,440 min/day)	Chlorine Residual (mg/L) = (<u>C+t</u>) (Time, minutes)
	Backwash Pumping Rate (GPM) - (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> sq. ft.)	Inactivation Ratio = (Actual System C- t) (Table "F" C+ t)
	Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPW</u> sq. ft.) x (Time, min)	C+t Calculated = T_v Value minutes x Chlorine Residual mail
	Backwash Rate, GPM/ sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - <u>% Removal</u> x Log key x (-1)
	Rate of Rise (inches per min.) = (Backwash Rate gpm/sq.ft.) x 12 inches /ft 7.48 gal/cu.ft.	
	Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (Filter Area sq. ft.)	
	CHEMICAL DOSAGE CALCULATIONS Note: (% purity) and (% commercial purity) used in decimal form	SEDIMENTATION Surface Loading Rate, (GPD/ sq. ft.) = (Total Flow, GPD) (Surface Area, so.ft.)
	Lbs/dar gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> % punty	Detention Time = <u>Volume</u> flow
	MGD x (ppm or mg/L) x 8.34 lbs/gal (% punity) x lbs/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
1	= MGD x (ppm or mg/l,) x 8.34 lbs/gal (commercial purity %) x (ion purity %) x (lbs/gal)	Flow Rate = <u>Volume</u> Time
	ppm or mg/l = <u>Ibs/day</u> or <u>galions x % purity x Ibs/gal</u> MGD x 8.34 Ibs/gal MG x 8.34 Ibs/gal	Weir Overflow Rate, GPD/L.F. = (<u>Flow, GPD</u>) (Weir length, ft.)

Dosage – Box 11, HTH

4. If 70% available HTH chlorine were added to water at a concentration of 15 ppm in a daily flow of 2.5 MGD, how many lbs would be used daily?

Ans. 446.8

Questions?

Text your questions and comments anytime during the session

Disinfection with Bleach

- Liquid comes in;
 - Gallon containers
 - 55 gallon drums
 - Large totes, bulk
- Does not weigh the same as a gallon of water, but...
- Assume it does if they do not mention it!
- AKA; Sodium Hypochlorite

Percentages

 How would an operator enter the percentage 5.25% into the calculator?

5.25

0.525

0.0525

0.00525

0.05

Chlorination – Box 2, Liquid

1. If 0.75 MG was treated with a 15% chlorine solution and a dose of 10 ppm was desired, how many gallons of solution would be required?

Liquid (gal) = (Vol, MG) x (Dosage, mg/l) x (8.34 lbs/gal)

(% Strength /100) x Chemical Wt. (lbs/gal)

	Econome G. Brown Jr.	
Water Boards State Water Resou	Inces Control Board	PUMPING 1 horsepower (Hp) = 746 watts = 0.746 kw = 3,960 gal/min/ft
$\label{eq:constraints} \begin{array}{ c c c c c } \hline \textbf{Matter Resconstraints}\\ \hline WITS and Dorder weights (52, 3032; b) \\ \hline \textbf{Updito for of where weights (52, 3032; b) \\ \hline \textbf{Her of torial weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of where weights (53, 4032; b) \\ \hline \textbf{Her of weights (53, 502; b) \\ \hline \textbf{Her of weights (53, 502$	Source of Board Source of Board Source of Board VOLUME Rectangular: Basin, Volume, gal = Garanti, 1x, Volum, gal = (Theorem, 1x, Volum, 1x, 1x, 1x, 1x, 1x, 1x, 1x, 1x, 1x, 1x	1 homspoor (ψ): 7.6 wids - 0.760 μs/mmt Wider Hφ - (0.740 μs/mmt) 0.300 μs/mmt) Mark Hφ - (0.740 μs/mmt) (0.300 μs/mmt) Mark Hφ - (0.240 μs/mmt) (0.300 μs/mmt) Mark Hφ - (0.240 μs/mmt) (0.300 μs/mmt) Mark Hφ - (0.3400 μs/mmt) (0.3400 μs/mmt) Mark Hφ - (0.3400 μs/mmt) (0.3401 μs/mmt) Mark Hφ - (0.3400 μs/mt) (0.3401 μs/mt) (0.3501 μs/mt) <t< td=""></t<>

Chlorination – Box 2, Liquid

1. If 0.75 MG was treated with a 15% chlorine solution and a dose of 10 ppm was desired, how many gallons of solution would be required?

Chlorination – Box 11, Liquid

4. If 75 gal/day of 15% chlorine bleach were added to a flow of 950,000 gal/day, and the product weighs 10 lbs/gal, what is the dosage rate in mg/L?

If we try to use Box 2, we would see the formula;

GPD = (<u>MGD) x (8.34 lbs/gal) x (ppm or mg/l)</u> (% purity) x lbs/gal

Chlorination – Box 11, Liquid

4. If 75 gal/day of 15% chlorine bleach were added to a flow of 950,000 gal/day, and the product weighs 10 lbs/gal, what is the dosage rate in mg/L?

ppm or mg/L = <u>gallons x % purity x lbs/gal</u> MG x 8.34 lbs/gal____

FILTRATION	C- T CALCULATIONS
Filtration Rate (GPM/sq.ft) = <u>Filter Production (gallons per day)</u> sq. ft. = square feet (Filter area sq. ft.) x (1,440 min/day)	C+t = (Chlorine Residual, mg/L) x (Time, minutes)
Loading Rate (GPM/ sq. ft.) = (<u>Flow Rate, GPM</u>) (Filter Area, sq. ft.)	(Chlorine Residual, mg/L)
Daily Filter Production (GPD) - (Filter Area, sq. ft.) x (<u>GPM</u> /sq. ft. x 1,440 min/day)	Chlorine Residual (mg/L) = (C+t) (Time, minutes)
Backwash Pumping Rate (GPM) - (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> sq. ft.)	Inactivation Ratio = (Actual System C+ t) (Table "E" C+ t)
Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> /sq. ft.) x (Time, min)	C+t Calculated = T ₁₀ Value, minutes x Chlorine Residual, mg/L
Backwash Rate, GPM/ sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - <u>% Removal</u> x Log key x (-1)
Rate of Rise (inches per min.) = (Backwash Rate gpm/sg.ft.) x 12 inches /ft 7.48 gal/cu.ft.	100
Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (Filter Area sq. ft.)	
Note: C purity and % commercial purity used in decimal form	Surface Loading Rate, (GPD/ sq. ft.) = (<u>Total Flow, GPD</u>) (Surface Area, so.ft.)
as feed dry = MGD x (ppm or mgL) x 8.34 lbs/gal = MGD x (ppm or mgL) x 8.34 lbs/gal % purty	Detention Time = <u>Volume</u> flow
MGD x (ppm or mgL) x 8.34 (ts/gal (% purity) x (ts/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = MGD x (ppm or mg/l,) x 8.34 lbs/gal	Flow Rate = <u>Volume</u> Time
(commercial purity %) x (ion purity %) x (lbs/gal)	
(commercial purity %) x (ion purity %) x (ibsigal) ppm or mg/l = <u>Ibsiday</u> or <u>gallons x % purity x Ibsigal</u> MGD x 8.34 Ibsigal MG x 8.34 Ibsigal	Weir Overflow Rate, GPD/L.F. = (Flow, GPD) (Weir length, fl.)

Chlorination – Box 11, Liquid

4. If 75 gal/day of 15% chlorine bleach were added to a flow of 950,000 gal/day, and the product weighs 10 lbs/gal, what is the dosage rate in mg/L?

Ans. 1	4.2	ppm
--------	-----	-----

FILTRATION	C- T CALCULATIONS
Filtration Rate (GPM/sq.ft) = Filter Production (gallons per day) sq. ft. = square feet (Filter area sq. ft.) x (1,440 min/day)	C+t = (Chlorine Residual, mg/L) x (Time, minutes)
Loading Rate (GPM/ sq. ft.) = (Flow Rate, GPM) (Filter Area, sq. ft.)	Time, minutes = (<u>C+1</u>) (Chlorine Residual, mg/L)
Daily Filter Production (GPD) = (Filter Area, sq. ft.) x (GPM/sq. ft. x 1,440 min/day)	(Time, minutes)
Backwash Pumping Rate (GPM) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> sq. ft.)	Inactivation Ratio = (Actual System C-t) (Table TE* C-t)
Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPW</u> /sq. ft.) x (Time, min)	C+t Calculated =
Backwash Rate, GPM/ sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - % Removal x Log key x (-1)
Rate of Rise (inches per min.) = (Backwash Rate gpm/sg.ft.) x 12 inches /ft 7.48 gal/cu.ft.	100
Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (Filter Area sq. ft.)	
	APRILIPHIA TION
Note: (* punty) and (% commercial punty) used in decimal form	Surface Loading Rate, (GPD/ sq. ft.) = (Total Flow, GPD (Surface Area, sq.
as teed dry = wcu (ppm or mg/L) x 0.34 losigal <u>MGD x (ppm or mg/L) x 8.34 losigal</u> % purty	Detention Time = <u>Volume</u> flow
MGD x (ppm or mg(), x 8.34 lbs/gal (% purity) x lbs/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = <u>MGD x (ppm or mg/l.) x 8.34 lbs/gal</u> (commercial purity %) x (ion purity %) x (ibs/gal)	Flow Rate = Volume Time
	White Overflow Parts, CDD/L E

Questions?

Text your questions and comments anytime during the session

 Detention time refers to the time that it takes a volume of water to move through a process or vessel

 This time can be determined by dividing the vessel volume (in gallons) and time per day by the flow

Rectangular Sed Basin Example

ELEVATION

Fig. 5.21 Rectangular sedimentation basin

SEDIMENTATION

Surface Loading Rate, (GPD/ sq. ft.) = (Total Flow, GPD) (Surface Area, sq.ft.)

Detention Time = <u>Volume</u> {times time/(24 hours, 1,440 minutes)} flow

Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day

Flow Rate = Volume Time

Weir Overflow Rate, GPD/L.F. = <u>(Flow, GPD)</u> (Weir length, ft.)

1. What is the detention time in **hours** for a flow of 2,200,000 gal/day through a tank that measures 50 feet long, 40 feet wide and 30 feet tall?

DT hours = <u>volume (cu ft) x 7.48 gal/cu ft x 24 hr/day</u> Gal/day

FILTRATION	C- T CALCULATIONS
Filtration Rate (GPM/sq.ft) = Filter Production (gallons per day) sq. ft. = square feet (Filter area sq. ft.) x (1,440 min/day)	C•t = (Chlorine Residual, mg/L) x (Time, minutes) Time minutes = (C•t)
Loading Rate (GPM/ sq. ft.) = (Flow Rate, GPM) (Filter Area, sq. ft.)	(Chlorine Residual, mg/L) Chlorine Residual (mg/L) = (C•t)
Daily Filter Production (GPD) = (Filter Area, sq. ft.) x (GPM/sq. ft. x 1,440 min/day)	(Time, minutes)
Backwash Pumping Rate (GPM) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> sq. ft.)	Inactivation Ratio = (<u>Actual System C- t</u>) (Table "E" C- t)
Backwash Volume (Gallons) = (Fitter Area, sq. ft.) x (Backwash Rate, <u>GPW</u> sq. ft.) x (Time, min)	C•t Calculated = T _{in} Value, minutes x Chlorine Residual, mg/L
Backwash Rate, GPM/ sq. ft. = (<u>Backwash Volume, gallons</u>) (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - % Removal x Log key x (-1)
Rate of Rise (inches per min.) = (Backwash Rate gpm/sq.ft.) x 12 inches /ft 7.48 gal/cu.ft.	100
Unit Filter Run Volume, (UFRV) = (qallons produced in a filter run) (Filter Area sq. ft.)	
CHEMICAL DOSAGE CALCULATIONS Note: (% punky) and (% commercial punky) used in decimal form	PD/ sq. ft.) = (Total Flow, GPD)
Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal	(Surface Area, Squit.)
% punity	
GPD = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> (% puntly) x lbs/gal	Galiday
GPD = <u>MGD x (ppm or mg/l,) x 8.34 liss/gal</u> (commercial purity %) x (ion purity %) x (ibs/gal)	Flow Rate = Volume Time
ppm or mg/l = <u>lbs/day</u> or <u>gallons.x % putity.x lbs/gal</u> MGD x 8.34 lbs/gal MG x 8.34 lbs/gal	Weir Overflow Rate, GPD/L.F. = (Flow, GPD) (Weir length, ft.)
	1

1. What is the detention time in **hours** for a flow of 2,200,000 gal/day through a tank that measures 50 feet long, 40 feet wide and 30 feet tall?

2. What is the detention time in **hours** for a flow of 2,900,000 gal/day through a tank that measures 50 feet in diameter by 60 feet tall?

DT, hours = <u>volume (cu ft) x 7.48 gal/cu ft x 24 hr/day</u> Gal/day

2. What is the detention time in **hours** for a flow of 2,900,000 gal/day through a tank that measures 50 feet in diameter by 60 feet tall?

Questions?

Text your questions and comments anytime during the session

Velocity – Box 7

Water traveling through a pipe will need to be converted into cubic feet per second *and* divided by the square footage (area) of the pipe.

Velocity – Box 7, finding fps

1. If a flow of 1,200,000 gpd were flowing through an 18 inch pipe, what is the velocity in ft/sec?

Velocity – Box 7, finding fps

1. If a flow of 1,200,000 gpd were flowing through an 18 inch pipe, what is the velocity in ft/sec?

 1.2
 1.86

 MGD x 1.55 cu ft/sec/MGD
 = cu ft/sec

 0.785 x pipe D, ft x pipe D. ft
 = sq ft

 1.5'
 1.5'

Ans. 1.05 fps

Filtration Rates

 The surface area of filtration media is where most material is removed

How Filters Work

Filtration Rates

- Filtration rates are determined by dividing the flow (usually in gpm) by the square footage of the filter media material
- gpm/sq ft

FILTRATION

10; part 1

Filtration Rate (GPM/sq.ft) = <u>Filter Production (gallons per day)</u> (Filter area sq. ft.) x (1,440 min/day)

Loading Rate (GPM/ sq. ft.) = (Flow Rate, GPM) (Filter Area, sq. ft.)

Daily Filter Production (GPD) = (Filter Area, sq. ft.) x (GPM/ sq. ft. x 1,440 min/day)

Backwash Pumping Rate (GPM) = (Filter Area, sq. ft.) x (Backwash Rate, GPM/ sq. ft.)

FILTRATION	C+ T CALCULATIONS
Filtration Rate (GPM/sq.ft) = Filter Production (c sq. ft. = square feet	C+t = (Chlorine Residual, mg/L) x (Time, minutes)
(File a set sq. 1) Loading Rate (GPM/ sq. ft.) (File	Time, minutes = (C+t) (Chlorine Residual, mg/L)
Daily Filter Production (GPD) - (Filt (GPM/sq. ft. x 1,440 min/day)	Chlorine Residual (mg/L) = (C+t) (Time, minutes)
Backwash Pumping Rate (GPM) - (Carter and Carter and Ca	Inactivation Ratio = (Actual System C-1) (Table 75° C+1)
Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPM</u> /sq. ft.) x (Time, min)	C+t Calculated = T ₁₀ Value, minutes x Chlorine Residual, mg/L
Backwash Rate, GPW/ sq. ft. = [Backwash Volume, galons] (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - % Removal x Log key x (-1)
Rate of Rise (inches per min.) = (Backwash Rate gpm/sg.ft.) x 12 inches /ft 7.48 gal/cu.ft.	100
Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (Filter Area sq. ft.)	
Note: (% punity) and (% commercial punity) used in decimal form	Surface Londing Data (CDD) on (A) on (Tatal Flow, CDD)
I haddau mae fand dau on MCD u (anno an mail) y 8.24 lla (an)	(Surface Loading Rate, (SPD/ sq. ft.) - <u>(Surface Area, sq.ft.</u>)
Lbs/day = MGD x (ppm or mgL) x 8.34 lbs/dat % nm/br	Detention Time = <u>Volume</u> flow
GPD = <u>MGD x (ppm or mgl, 1 x 8.34 lbs/gal</u> (% punty) x lbs/gal	Detention Time hours = volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> (commercial purity %) x (ion purity %) x (ibs/gal)	Flow Rate = <u>Volume</u> Time
ppm or mg/l = <u>llos(day</u> or <u>gallons x % purity x lbs/gal</u> MGD x 8.34 lbs/gal MG x 8.34 lbs/gal	Weir Overflow Rate, GPD/L.F. = (Flow, GPD) (Weir length, ft.)

FILTRATION (cont.)

10; part 2

Backwash Volume (Gallons) =

(Filter Area, sq. ft.) x (Backwash Rate, gpm/ sq. ft.) x (Time, min).

Backwash Rate, GPM/ sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.) x (Time, min)

Rate of Rise (inches per min.) = (backwash rate gpm/sq.ft.) x 12 inches /ft 7.48 gal/cu.ft.

Unit Filter Run Volume, (UFRV) = (gallons produced in a filter run) (filter area sq. ft.)

FILTRATION	C- T CALCULATIONS
Filtration Rate (GPM/sq.ft) = Filter Production (o sq. ft. = square feet	C+t = (Chlorine Residual, mg/L) x (Time, minutes)
Loading Rate (GPM/ sq. ft.) = (Fig	Time, minutes = (<u>C+1</u>) (Chlorine Residual, mg/L)
Daily Filter Production (GPD) = (Fil GPM/sq. ft. x 1,440 min/day)	Chlorine Residual (mg/L) = (C•t) (Time, minutes)
Backwash Pumping Rate (GPM) - (Backwash Rate, <u>GPM</u> sq. ft.)	Inactivation Ratio = (Actual System C- t) (Table "E" C- t)
Backwash Volume (Gallons) = (Filter Area, sq. ft.) x (Backwash Rate, <u>GPW</u> sq. ft.) x (Time, min)	C+t Calculated = Try Value, minutes x Chlorine Residual, molt.
Backwash Rate, GPM/ sq. ft. = (Backwash Volume, gallons) (Filter Area, sq. ft.) x (Time, min)	Log Removal = 1.0 - % Removal x Log key x (-1)
Rate of Rise (inches per min.) = (Backwash Rate gpm/sq.ft.) x 12 inches /ft 7.48 gal/cu.ft.	100
Unit Filter Run Volume, (UFRV) = (gallone produced in a filter run) (Filter Area sq. ft.)	
CHEMICAL DOSAGE CALCULATIONS	SEDIMENTATION
Note: (% punity) and (% commercial punity) used in decimal form	Surface Loading Rate, (GPD/ sq. ft.) = (Total Flow, GPD) (Surface Area so ft.)
Lbs/day gas feed dry = MGD x (ppm or mg/L) x 8.34 lbs/gal	Detention Time = Volume
% purity	now
GPD = <u>MGD x (ppm or mg/l,) x 8.34 lbs/gal</u> (% purity) x lbs/gal	volume (cu ft) x 7.48 gal/cu ft x 24 hr/day Gal/day
GPD = <u>MGD x (ppm or mg/L) x 8.34 lbs/gal</u> (commercial purity %) x (ion purity %) x (ibs/gal)	Flow Rate = <u>Volume</u> Time
ppm or mg/l = <u>Ibs(day</u> or <u>gallons x % putity x Ibs(gal</u> MGD x 8.34 Ibs(gal MG x 8.34 Ibs(gal	Weir Overflow Rate, GPD/L.F. = (Flow, GPD) (Weir length, ft.)

Filtration Rates – Box 10

- 2. What is the filtration rate in gpm/sq ft if a flow of 1,000,000 gal/day flows through a filter measuring 20 ft by 25 ft?
- Set up:

gpm ÷ sq ft = gpm/sq ft

Filtration Rates – Box 10

- 2. What is the filtration rate in gpm/sq ft if a flow of 1,000,000 gal/day flows through a filter measuring 20 ft by 25 ft?
- Set up:

1,000,000 gal/day ÷ 1,440 min/day = <u>694.4 gpm</u>

20 ft x 25 ft = 500 sq ft

gpm ÷ sq ft = 1.388 gpm/sq ft

Filtration Rate – Box 10, Flow

- 3. When the flow to a filter is shut off and the water drops 20 inches in 9 minutes, how fast is the water dropping in feet per minute?
- Set up:

$$in \div 12 in/ft = ft$$

ft ÷ 9 min = ft/min

Filtration Rate – Box 10, Flow

- 3. When the flow to a filter is shut off and the water drops 20 inches in 9 minutes, how fast is the water dropping in feet per minute?
- Set up:
 20 in ÷ 12 in/ft = 1.66 ft

1.66 ft ÷ 9 min = 0.18 ft/min

Backwash Rates – Box 10

- 6. What is the backwash flow required in gpm to backwash a 25 ft wide by 30 ft long filter if a backwash flow of 20 gpm/sq ft is required?
- Set up:
 25 ft x 30 ft = 750 sq ft

750 sq ft x 20 gpm/sq ft = 15,000 gpm

Poll #4 - What did you learn today?

ANY QUESTIONSP

Thank You For Attending!

We look forward to seeing you in future online classes!

jhamner@rcac.org

jmcveigh@rcac.org

